Exercise Sheet 6

Discussed on 02.06.2021

Problem 1. Let k be a field and E an elliptic curve over k with an embedding $E \hookrightarrow \mathbb{P}_{k}^{2}$ via a Weierstraß equation. In particular we have the coordinate functions $x, y \in k(E)$. Let $e:=\infty \in E(k)$ and pick any $p, q \in E(k)$.
(a) Show that up to scaling, there is a unique non-zero function $f \in \Gamma(E, \mathcal{O}(3 e-p-q))$. It is of the form $f=a x+b y+c$ for some $a, b, c \in k$ such that p and q lie on the line

$$
L_{p, q}:=V_{+}(a x+b y+c z) \subset \mathbb{P}_{k}^{2}
$$

Hint: Recall that $\Gamma(E, \mathcal{O}(3 e))$ is generated by $1, x, y$ over k.
(b) Using f we obtain an exact sequence

$$
0 \rightarrow \mathcal{O} \stackrel{f}{\rightarrow} \mathcal{O}(3 e-p-q) \rightarrow \mathcal{F} \rightarrow 0
$$

of sheaves on E, where \mathcal{F} is a skyscraper sheaf concentrated at $r:=p+q \in E(k)$. Show that r is the third intersection of $L_{p, q}$ with E (counted with multiplicity).

Problem 2. Let p be a prime, $q=p^{n}$ for some $n \geq 0$ and E an elliptic curve over \mathbb{F}_{q}.
(a) For every \mathbb{F}_{p}-scheme X, the absolute Frobenius $F_{X}: X \rightarrow X$ is the morphism of schemes which is the identity on topological spaces and maps $a \mapsto a^{p}$ on coordinate rings. Show that $f:=F_{E}^{n}: E \rightarrow E$ is an isogeny of E of degree q.
(b) Compute $\operatorname{ker}(f)$. Deduce that if E is ordinary ${ }^{1}$ then $f \notin \mathbb{Z}$, hence $\operatorname{End}^{0}(E)$ is at least a quadratic extension of \mathbb{Q}.
(c) Assume that E is ordinary. Show that for all $m \geq 1, E\left[p^{m}\right]\left(\overline{\mathbb{F}}_{q}\right) \cong \mathbb{Z} / p^{m} \mathbb{Z}$. We define the p-adic Tate module

Show that $\operatorname{End}(E)$ acts on $T_{p} E$ and hence cannot be a quaternion algebra. Deduce that $\operatorname{End}^{0}(E)$ is a quadratic extension of \mathbb{Q}.

Hint on (c): For the first part, show first that for any field k and any surjection of finite-type k-schemes $X \rightarrow Y$, the map $X(\bar{k}) \rightarrow Y(\bar{k})$ is surjective.

[^0]Problem 3. Let k be a field of characteristic $p>0$ and let E be an elliptic curve over k.
(a) Show that there are natural projection maps $\operatorname{End}\left(E\left[p^{n}\right]\right) \rightarrow \operatorname{End}\left(E\left[p^{n-1}\right]\right)$ for all $n>1$.
(b) Show that there is a natural map

$$
\operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Z}_{p} \rightarrow \underset{n}{\lim _{n}} \operatorname{End}\left(E\left[p^{n}\right]\right) .
$$

Show that this map is injective.
Hint: Use the same strategy as in the ℓ-adic case (see lecture).

[^0]: ${ }^{1}$ Recall that E is ordinary iff $E[p]\left(\overline{\mathbb{F}}_{q}\right) \cong \mathbb{Z} / p \mathbb{Z}$.

